
74LVTH162374
Logic Symbol

Connection Diagrams

Pin Assignments for SSOP and TSSOP

Pin Assignment for FBGA

(Top Thru View)

Pin Names	Description
$\overline{O E}_{n}$	Output Enable Input (Active LOW)
$C P_{n}$	Clock Pulse Input
$\mathrm{I}_{0}-\mathrm{I}_{15}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{15}$	3-STATE Outputs
NC	No Connect

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	O_{0}	NC	$\overline{\mathrm{OE}}_{1}$	CP_{1}	NC	I_{0}
\mathbf{B}	O_{2}	O_{1}	NC	NC	I_{1}	I_{2}
\mathbf{C}	O_{4}	O_{3}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{3}	I_{4}
\mathbf{D}	O_{6}	O_{5}	GND	GND	I_{5}	I_{6}
\mathbf{E}	O_{8}	O_{7}	GND	GND	I_{7}	I_{8}
\mathbf{F}	O_{10}	O_{9}	GND	GND	I_{9}	I_{10}
\mathbf{G}	O_{12}	O_{11}	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	I_{11}	I_{12}
\mathbf{H}	O_{14}	O_{13}	NC	NC	I_{13}	I_{14}
\mathbf{J}	O_{15}	NC	$\overline{\mathrm{OE}}_{2}$	CP_{2}	NC	I_{15}

Truth Tables

Inputs			Outputs
$\mathrm{CP}_{\mathbf{1}}$	$\overline{\mathrm{OE}}_{\mathbf{1}}$	$\mathrm{I}_{\mathbf{0}}-\mathrm{I}_{\mathbf{7}}$	$\mathrm{O}_{\mathbf{0}}-\mathrm{O}_{\mathbf{7}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

Inputs			Outputs
$\mathrm{CP}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{8}} \mathrm{I}_{\mathbf{1 5}}$	$\mathrm{O}_{\mathbf{8}}-\mathrm{O}_{\mathbf{1 5}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{o}
X	H	X	Z

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
Z = HIGH Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW of CP

Functional Description

The LVTH162374 consists of sixteen edge－triggered flip－flops with individual D－type inputs and 3－STATE true outputs．The device is byte controlled with each byte functioning identically，but independent of the other．The control pins can be shorted together to obtain full 16－bit operation．Each byte has a buffered clock and buffered Output Enable common to all flip－flops within that byte．The description which follows applies to each byte．Each flip－flop will store the state of their indi－ vidual D－type inputs that meet the setup and hold time requirements on the LOW－to－HIGH Clock $\left(\mathrm{CP}_{n}\right)$ transition．With the Output Enable $\left(\overline{\mathrm{OE}}_{\mathrm{n}}\right)$ LOW，the contents of the flip－flops are available at the outputs．When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH，the outputs go to the high impedance state．Operation of the $\overline{\mathrm{OE}}_{\mathrm{n}}$ input does not affect the state of the flip－flops．

Logic Diagrams

Absolute Maximum Ratings(Note 2)				
Symbol	Parameter	Value	Conditions	Units
V_{CC}	Supply Voltage	-0.5 to +4.6		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{O}	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 3)	
$\overline{\mathrm{I}_{\mathrm{K}}}$	DC Input Diode Current	-50	$\mathrm{V}_{1}<$ GND	mA
Tok	DC Output Diode Current	-50	$\mathrm{V}_{0}<\mathrm{GND}$	mA
I_{0}	DC Output Current	64	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ Output at HIGH State	mA
		128	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ Output at LOW State	
ICC	DC Supply Current per Supply Pin	± 64		mA
IGND	DC Ground Current per Ground Pin	± 128		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.7	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0	5.5	V
I_{OH}	HIGH Level Output Current		-12	mA
I_{OL}	LOW Level Output Current		12	mA
$\mathrm{~T}_{\mathrm{A}}$	Free-Air Operating Temperature	-40	85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	$\mathrm{~ns} / \mathrm{V}$

Note 2: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions
beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.
Note 3: I_{0} Absolute Maximum Rating must be observed.
DC Electrical Characteristics

Symbol	Parameter		V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			Min	Max				
V_{IK}	Input Clamp Diode Voltage			2.7		-1.2	V	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$
V_{IH}	Input HIGH Voltage		2.7-3.6	2.0		V	$\mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V}$ or	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		2.7-3.6		0.8	V	$\mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$	
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Output HIGH Voltage		2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V	$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$	
			3.0	2.0			$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}$	
$\overline{\mathrm{V}} \mathrm{OL}$	Output LOW Voltage		2.7		0.2	V	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	
			3.0		0.8		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	
$\overline{I_{\text {(HOLD })}}$	Bushold Input Minimum Drive		3.0	75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	
				-75			$\mathrm{V}_{1}=2.0 \mathrm{~V}$	
$\overline{I_{\text {(OD) }}}$	$\begin{aligned} & \text { Bushold Input Over-Drive } \\ & \text { Current to Change State } \end{aligned}$		3.0	500		$\mu \mathrm{A}$	(Note 4)	
			-500		(Note 5)			
I_{1}	Input Current			3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$
		Control Pins	3.6		± 1	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}		
		Data Pins	3.6		-5	$\mathrm{V}_{1}=0 \mathrm{~V}$		
					1	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$		
IofF	Power Off Leakage Current		0		± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
$\mathrm{I}_{\text {PU/PD }}$	Power Up/Down 3-STATE Output Current		0-1.5V		± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	
IozL	3-STATE Output Leakage Current		3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	
Iozh	3-STATE Output Leakage Current		3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}$	
IOZH^{+}	3-STATE Output Leakage Current		3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	
${ }^{\text {CCH }}$	Power Supply Current		3.6		0.19	mA	Outputs HIGH	
${ }_{\text {CCL }}$	Power Supply Current		3.6		5	mA	Outputs LOW	
$\mathrm{I}_{\mathrm{CCz}}$	Power Supply Current		3.6		0.19	mA	Outputs Disabled	

DC Electrical Characteristics (Continued)						
Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Max		
$\overline{\mathrm{ICCZ}}{ }^{+}$	Power Supply Current	3.6		0.19	mA	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V},$ Outputs Disabled
$\overline{\Delta l}_{\text {CC }}$	Increase in Power Supply Current (Note 6)	3.6		0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at V_{CC} or GND
Note 4: An external driver must source at least the specified current to switch from LOW-to-HIGH. Note 5: An external driver must sink at least the specified current to switch from HIGH-to-LOW. Note 6: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND. Dynamic Switching Characteristics (Note 7)						

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	Conditions$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
			Min	Typ	Max		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	3.3		0.8		V	(Note 8)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	3.3		-0.8		V	(Note 8)

Note 8: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . Output under test held LOW.
AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$				Units
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	160		150		MHz
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay CP to O_{n}	$\begin{aligned} & 2.0 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 6.2 \end{aligned}$	ns
$\begin{aligned} & \hline t_{P Z L} \\ & t_{P Z H} \end{aligned}$	Output Enable Time	$\begin{aligned} & \hline 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 1.9 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.7 \end{aligned}$	ns
t_{S}	Setup Time	1.8		2.0		ns
t_{H}	Hold Time	0.8		0.1		ns
t_{W}	Pulse Width	3.0		3.0		ns
$\mathrm{t}_{\mathrm{OSHL}}$ tosLh	Output to Output Skew (Note 9)		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns

Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$).

Capacitance (Note 10)

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}, \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	8	pF

Note 10: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

